Android Malware Characterization using Metadata and Machine Learning Techniques
نویسندگان
چکیده
Android Malware has emerged as a consequence of the increasing popularity of smartphones and tablets. While most previous work focuses on inherent characteristics of Android apps to detect malware, this study analyses indirect features and meta-data to identify patterns in malware applications. Our experiments show that: (1) the permissions used by an application offer only moderate performance results; (2) other features publicly available at Android Markets are more relevant in detecting malware, such as the application developer and certificate issuer, and (3) compact and efficient classifiers can be constructed for the early detection of malware applications prior to code inspection or sandboxing.
منابع مشابه
DroidDetector: Android Malware Characterization and Detection Using Deep Learning
Smartphones and mobile tablets are rapidly becoming indispensable in daily life. Android has been the most popular mobile operating system since 2012. However, owing to the open nature of Android, countless malwares are hidden in a large number of benign apps in Android markets that seriously threaten Android security. Deep learning is a new area of machine learning research that has gained inc...
متن کاملHigh accuracy android malware detection using ensemble learning
With over 50 billion downloads and more than 1.3 million apps in Google’s official market, Android has continued to gain popularity amongst smartphone users worldwide. At the same time there has been a rise in malware targeting the platform, with more recent strains employing highly sophisticated detection avoidance techniques. As traditional signature based methods become less potent in detect...
متن کاملN-gram Opcode Analysis for Android Malware Detection
Android malware has been on the rise in recent years due to the increasing popularity of Android and the proliferation of third party application markets. Emerging Android malware families are increasingly adopting sophisticated detection avoidance techniques and this calls for more effective approaches for Android malware detection. Hence, in this paper we present and evaluate an n-gram opcode...
متن کاملObfuscation-Resilient, Efficient, and Accurate Detection and Family Identification of Android Malware
The number of Android malware apps are increasing very quickly. Simply detecting and removing malware apps is insufficient, since they can damage or alter other files, data, or settings; install additional applications; etc. To determine such behavior, a security engineer can significantly benefit from identifying the specific family to which an Android malware belongs. Techniques for detecting...
متن کاملDroidCat: Unified Dynamic Detection of Android Malware
Various dynamic approaches have been developed to detect or categorize Android malware. These approaches execute software, collect call traces, and then detect abnormal system calls or sensitive API usage. Consequently, attackers can evade these approaches by intentionally obfuscating those calls under focus. Additionally, existing approaches treat detection and categorization of malware as sep...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1712.04402 شماره
صفحات -
تاریخ انتشار 2017